Third Semester B.E. Degree Examination, Dec.2013/Jan.2014 **Network Analysis**

Time: 3 hrs. Max. Marks: 100

> Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

Using star-delta transformation reduce the given network shown in Fig.Q1(a) and determine the total current supplied by the source. (04 Marks)

- Use mesh analysis to calculate the current I in the circuit shown in Fig.Q1(b). (10 Marks) (06 Marks)
- Find the node voltages in the network shown in Fig.Q1(c)

Fig.Q2(b)

- Explain the following terms with example as applied to network topology: (i) Oriented 2 graph (ii) Planar and non-planar graph (iii) Tree (iv) Tie-set (v) Cut-set. (10 Marks)
 - Write the oriented graph for the circuit shown in Fig.Q2(b), taking branches 4, 5, 6 as tree obtain tie-set schedule and using this tie-set schedule obtain equilibrium connection on loop (10 Marks) current basis.
- State and prove reciprocity theorem. 3

Fig.Q1(c)

(05 Marks)

Find the current through 2Ω resistor in the network shown in Fig.Q3(b), using super position (08 Marks) theorem.

Fig.Q3(c)

- Using Millnoon's theorem find the current through 10Ω resistor in the network shown in (07 Marks) Fig.Q3(c).
- State and prove maximum power transfer theorem for DC circuit. (06 Marks) 4
 - Determine the Norton's equivalent circuit across terminals ab in the network shown in Fig.Q4(b). (06 Marks)

Fig.Q4(b)

Fig.Q5(c)

c. A linear time invariant network when terminated with (i) $R = 1\Omega$ the current is $5 - 45^{\circ}$ A (ii) $X_c = 1 \Omega$, the current is $10 - 45^{\circ}$ A. Find the Thevenin's equivalent of the network. What will be the current if it is terminated with $X_L = 1 \Omega$. (08 Marks)

<u>PART – B</u>

- 5 a. Show that in a series resonant circuit the resonant frequency is the geometric mean of half-power frequencies. (06 Marks)
 - b. A series resonant circuit includes 1 μ F capacitor and a resistance of 16 Ω , if the bandwidth is 500 rad/sec. Determine (i) W_r (ii) Q (iii) L. (06 Marks)
 - c. Find the value of L for which the circuit shown in Fig.Q5(c) is resonate at a frequency of W = 500 rad/sec. (08 Marks)
- 6 a. Explain the behavior of circuit elements Resistor, Inductor and Capacitor during switching conditions. (06 Marks)
 - b. In the circuit shown in Fig.Q6(b), the switch is closed at t=0. Find i_L , i_c , $\frac{di_L}{dt}$ and $\frac{di_c}{dt}$ at t = 0 . (08 Marks)

Fig.Q6(c)

- c. In the network shown in Fig.Q6(c), switch 'K' is opened at t = 0. Solve for $v \cdot \frac{dv}{dt}$ and $\frac{d^2v}{dt^2}$ at $t = 0^+$, if I = 10 A, $R = 1000 \Omega$, $C = 1 \mu\text{F}$. (06 Marks)
- 7 a. State and prove initial value theorem and final value theorem.

(08 Marks)

b. Find the Laplace transform of the waveform shown in Fig.Q7(b).

(06 Marks)

Fig.Q7(c)

- c. Find i(t) for t > 0 in the network shown in Fig.Q7(c) using Laplace transformation. Assume $V_c(0^-) = 0 \text{ V}$. (06 Marks)
- 8 a. Derive expression for Z-parameters in terms of Y parameters. (08 Marks)
 - b. Obtain ABCD parameters in terms of impedance [Z] parameters and hence show that AD BC = 1 (08 Marks)
 - c. For a certain two port network V_1 and V_2 are given by

$$V_1 = 60I_1 + 20I_2$$

 $V_2 = 20I_1 + 40I_2$

Find Y – parameters of the network.

(04 Marks)